Connected cuts Master thesis

Institute

Date

Author Tomáš Turek

Charles University

2025

Table of Contents

Preliminarie

Notation

MINIMUM CONNECTED k-CUT

MINIMUM CONNECTED k-CUT WITH SOURCE

NP-completeness

NP-completeness of MINIMUM CONNECTED k-CUT WITH SOURCE

ND -----l-t----

NP-completeness of Minimum connected k-cut

Bicriteria approximation algorithm

Absorptive flow Integer linear progran Approximation Algorithm

- graph G = (V, E), V vertices, $E \subseteq \binom{V}{2}$ edges
- $\{u,v\}$ single edge
- n := |V|
- $[\ell] := \{1, 2, \dots, \ell\} \text{ and } [k, \ell] := \{k, k+1, \dots, \ell\}$ $\langle \ell, r \rangle := \{x \in \mathbb{R} \mid \ell \le x \le r\}$

- graph G = (V, E), V vertices, $E \subseteq \binom{V}{2}$ edges
- $\{u,v\}$ single edge
- n := |V|
- $[\ell] := \{1, 2, \dots, \ell\} \text{ and } [k, \ell] := \{k, k+1, \dots, \ell\}$
- $\langle \ell, r \rangle := \{ x \in \mathbb{R} \mid \ell < x < r \}$

Definition The partition of vertices V into $\ell \in \mathbb{N}$ parts is a set $\mathcal{V} = \{V_1, V_2, \dots, V_\ell\}$ such that $\bigcup_{i=1}^\ell V_i = V$ and $\forall i \neq j \in [\ell] : V_i \cap V_i = \emptyset.$

- graph G = (V, E), V vertices, $E \subseteq \binom{V}{2}$ edges
- $\{u,v\}$ single edge
- n := |V|
- $[\ell] := \{1, 2, \dots, \ell\} \text{ and } [k, \ell] := \{k, k+1, \dots, \ell\}$
- $\langle \ell, r \rangle := \{ x \in \mathbb{R} \mid \ell < x < r \}$

Definition The partition of vertices V into $\ell \in \mathbb{N}$ parts is a set $\mathcal{V} = \{V_1, V_2, \dots, V_\ell\}$ such that $\bigcup_{i=1}^\ell V_i = V$ and $\forall i \neq i \in [\ell] : V_i \cap V_i = \emptyset.$

Definition

A graph is connected if and only if every pair of vertices has a path between them.

Definition

An induced subgraph G[S] on vertices $S \subseteq V$ is a graph G' = (S, E'), s.t. $\{u, v\} \in E' \iff u \in S \land v \in S \land \{u, v\} \in E$. We say that $S \subseteq V$ is connected if the induced subgraph G[S] is connected.

Definition

An induced subgraph G[S] on vertices $S \subseteq V$ is a graph G' = (S, E'), s.t.

 $\{u,v\} \in E' \iff u \in S \land v \in S \land \{u,v\} \in E$. We say that $S \subseteq V$ is connected if the induced subgraph G[S] is connected.

$$E(S, V \setminus S)$$
 - edges between S and $V \setminus S$

$$e(S, V \setminus S) = |E(S, V \setminus S)|$$

- partition $S \subset V$ and $V \setminus S$ is a cut
- we also call $E(S, V \setminus S)$ a cut (the terms are interchangeable)

MINIMUM CONNECTED k-CUT

Definition

For a connected graph G = (V, E) and $k \in \mathbb{N}$, a connected k-cut is $S \subset V$ such that all following properties hold:

- G[S] is connected.
- |S| = k.

MINIMUM CONNECTED k-CUT

Definition

For a connected graph G = (V, E) and $k \in \mathbb{N}$, a connected k-cut is $S \subset V$ such that all following properties hold:

- G[S] is connected.
- |S| = k.

Problem

Minimum connected k-cut is to find connected k-cut minimizing $e(S, V \setminus S)$.

MINIMUM CONNECTED k-CUT WITH SOURCE

Definition |

For a connected graph G = (V, E), a vertex $s \in V$ and $k \in \mathbb{N}$ a connected k-cut with source is $S \subset V$ such that all following properties hold:

- G[S] is connected.
 - |S|=k.

MINIMUM CONNECTED k-CUT WITH SOURCE

Definition

For a connected graph G=(V,E), a vertex $s\in V$ and $k\in\mathbb{N}$ a connected k-cut with source is $S\subset V$ such that all following properties hold:

- G[S] is connected.
- |S| = k.
 - $s \in S$.

MINIMUM CONNECTED k-CUT WITH SOURCE

Definition

For a connected graph G = (V, E), a vertex $s \in V$ and $k \in \mathbb{N}$ a connected k-cut with source is $S \subset V$ such that all following properties hold:

- G[S] is connected.
- |S| = k.
- $s \in S$.

Problem

Minimum connected k-cut with source is to find connected k-cut with source minimizing $e(S, V \setminus S)$.

MINIMUM CONNECTED k-CUT

Example

See a MINIMUM CONNECTED k-CUT example. For this graph we consider k=3.

- G[S] is connected.
- |S| = k.
 - $e(S, V \setminus S)$ is minimized.

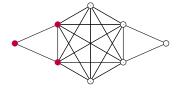


Figure: Possible solution with purple vertices chosen into S.

MINIMUM CONNECTED k-CUT

Example

See a MINIMUM CONNECTED k-CUT example. For this graph we consider k=3.

- G[S] is connected.
- |S| = k.
 - $e(S, V \setminus S)$ is minimized.

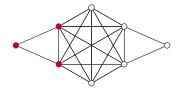


Figure: Possible solution with purple vertices chosen into ${\it S}$.

Question

What if we omit one of them.

Connected k-cut

Example

For this graph we consider k = 3.

- G[S] is connected.
- |S| = k.
 - $e(S, V \setminus S)$ is minimized.

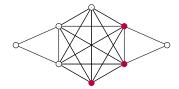


Figure: Possible solution with purple vertices chosen into S.

Connected k-cut

Example

For this graph we consider k = 3.

G[S] is connected.

$$|S| = k.$$

 $e(S, V \setminus S)$ is minimized.

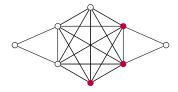


Figure: Possible solution with purple vertices chosen into S.

Solution

We may use only search algorithms.

MINIMUM CONNECTED CUT

Example

For this graph we consider k = 3.

- G[S] is connected.
- |S| = k.
- $e(S, V \setminus S)$ is minimized.

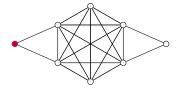


Figure: Possible solution with purple vertices chosen into S.

MINIMUM CONNECTED CUT

Example

For this graph we consider k = 3.

G[S] is connected.

|S| = k

 $e(S, V \setminus S)$ is minimized.

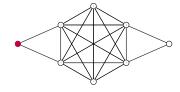


Figure: Possible solution with purple vertices chosen into S.

Solution

Either use flows and cuts or polyhedron by Garg [4].

MINIMUM k-CUT

Example

For this graph we consider k = 3.

- G[S] is connected
- |S| = k.
 - $e(S, V \setminus S)$ is minimized.

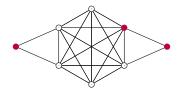


Figure: Possible solution with purple vertices chosen into S.

MINIMUM k-CUT

For this graph we consider k = 3.

- |S| = k.
 - $e(S, V \setminus S)$ is minimized.

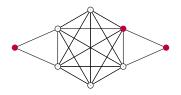


Figure: Possible solution with purple vertices chosen into S.

Solution

Use the results from minimum bisection by Feige and Krauthgamer [1].

Table of Contents

Preliminaries

Notation

MINIMUM CONNECTED k-CUT

MINIMUM CONNECTED k-CUT WITH SOURCE

NPcompleteness

NP-completeness of Minimum connected k-cut with source

NP-completeness of Minimum connected k-cut

Bicriteria approximation algorithm

Absorptive flow Integer linear program Approximation Algorithm

NP-completeness

- We use polynomial time reduction from MINIMUM BISECTION.
- We may assume that |V| is even.
- The MINIMUM BISECTION problem is NP-complete [2, 3, 5].

NP-completeness

- We use polynomial time reduction from MINIMUM BISECTION.
- We may assume that |V| is even.
- The MINIMUM BISECTION problem is NP-complete [2, 3, 5].

Problem

Given graph G=(V,E) the goal is to find a partition $\mathcal{V}=\{V_1,V_2\}$ where $|V_1|=|V_2|=\frac{1}{2}|V|$ and $\mathrm{e}(V_1,V_2)$ is minimized.

Lemma

The MINIMUM CONNECTED k-CUT WITH SOURCE problem is NP-complete.

Lemma

The MINIMUM CONNECTED k-CUT WITH SOURCE problem is NP-complete.

Proof.

add vertex s

set
$$k = \frac{n}{2} + 1$$

Lemma

The MINIMUM CONNECTED k-CUT WITH SOURCE problem is NP-complete.

Proof.

add vertex sset $k = \frac{n}{2} + 1$

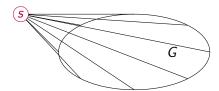
Lemma

The MINIMUM CONNECTED k-CUT WITH SOURCE problem is NP-complete.

Proof.

add vertex s

$$set k = \frac{n}{2} + 1$$



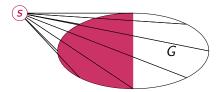
Lemma

The MINIMUM CONNECTED k-CUT WITH SOURCE problem is NP-complete.

Proof.

add vertex s

$$set k = \frac{n}{2} + 1$$



Theorem

The MINIMUM CONNECTED k-CUT problem is NP-complete.

Theorem

The MINIMUM CONNECTED k-CUT problem is NP-complete.

Proof.

Theorem

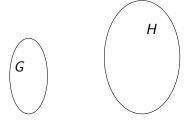
The MINIMUM CONNECTED k-CUT problem is NP-complete.

Proof.

Theorem

The MINIMUM CONNECTED k-CUT problem is NP-complete.

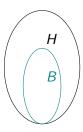
Proof.



Theorem

The MINIMUM CONNECTED k-CUT problem is NP-complete.

Proof.



Theorem

The MINIMUM CONNECTED k-CUT problem is NP-complete.

Proof.

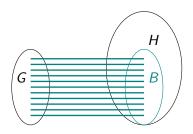


Table of Contents

Preliminaries

Notation

MINIMUM CONNECTED k-CUT

MINIMUM CONNECTED k-CUT WITH SOURCE

NPcompleteness

NP-completeness of Minimum connected k-cut with source

NP-completeness of MINIMUM CONNECTED k-CUT

Bicriteria approximation algorithm

Absorptive flow
Integer linear program
Approximation
Algorithm

Absorptive flow

Definition

Given a graph G=(V,E), $s\in V$ and an integer $k\in \mathbb{N}, k\leq n$, an absorptive flow is a pair of functions (f_V,f_E) , $f_V:V\to \mathbb{R}$, $f_E:E\to \mathbb{R}$, satisfying the following properties:

- $\sum_{v\in V} f_V(v) = k$
- 2 $f_V(s) = 1$
- $\forall v \in V : 0 \le f_V(v) \le 1$
- $\sum_{v \in V, \{s,v\} \in E} f_E(\{s,v\}) = k-1$
- $\forall e \in E : 0 \le f_E(e)$

Absorptive flow

Definition

Given a graph G=(V,E), $s\in V$ and an integer $k\in\mathbb{N}, k\leq n$, an absorptive flow is a pair of functions (f_V,f_E) , $f_V:V\to\mathbb{R},\ f_E:E\to\mathbb{R}$, satisfying the following properties:

- $\sum_{v \in V} f_V(v) = k$
- 2 $f_V(s) = 1$
- $\forall v \in V : 0 \le f_V(v) \le 1$
- $\sum_{v \in V, \{s,v\} \in E} f_E(\{s,v\}) = k 1$
- $\forall e \in E : 0 \leq f_E(e)$
- 6 $\forall v \in V \setminus \{s\} : \sum_{u \in V, \{u,v\} \in E} f_E(\{u,v\}) = \sum_{u \in V, \{v,u\} \in E} f_E(\{v,u\}) + f_V(v)$

Absorptive flow Definition Given a graph G = (V, E), $s \in V$ and an integer

$$(f_V,f_E),\ f_V:V\to\mathbb{R},\ f_E:E\to\mathbb{R}\ ,\ \text{satisfying the following properties:}$$

$$\sum_{v\in V}f_V(v)=k$$

$$\sum_{v\in V}f_V(v)=k$$

$$\forall v\in V:0\leq f_V(v)\leq 1$$

$$\sum_{v\in V,\{s,v\}\in E}f_E(\{s,v\})=k-1$$

 $e(S, V \setminus S)$.

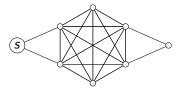
Definition

 $\forall e \in E : 0 \le f_E(e)$ $\forall v \in V \setminus \{s\} : \sum_{u \in V, \{u,v\} \in E} f_E(\{u,v\}) = \sum_{u \in V, \{v,u\} \in E} f_E(\{v,u\}) + f_V(v)$ on Given an absorptive flow (f_V, f_E) on a graph G = (V, E) we set $S = \{v \in V \mid f_V(v) > 0\}$. The boundary of absorptive flow is $E(S, V \setminus S)$, where its size is

 $k \in \mathbb{N}, k < n$, an absorptive flow is a pair of functions

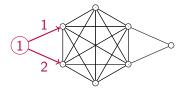
Example

Here we have an example of an absorptive flow for a given graph and k=4.



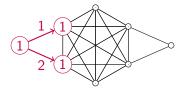
Example

Here we have an example of an absorptive flow for a given graph and k=4.



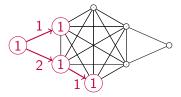
Example

Here we have an example of an absorptive flow for a given graph and k=4.



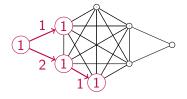
Example

Here we have an example of an absorptive flow for a given graph and k = 4.

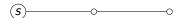


Example

Here we have an example of an absorptive flow for a given graph and k = 4.

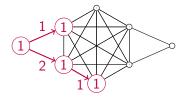


Example



Example

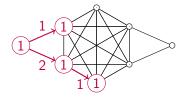
Here we have an example of an absorptive flow for a given graph and k=4.



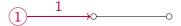
Example

Example

Here we have an example of an absorptive flow for a given graph and k=4.

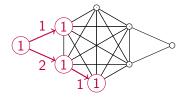


Example

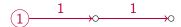


Example

Here we have an example of an absorptive flow for a given graph and k = 4.

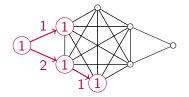


Example

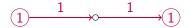


Example

Here we have an example of an absorptive flow for a given graph and k=4.



Example



Variables

$$\forall v \in V \quad f_v = \left\{ egin{array}{ll} 1 & \mbox{if the vertex v absorbs.} \\ 0 & \mbox{otherwise.} \end{array} \right.$$

$$orall \{u,v\} \in E \quad f_{uv}, f_{vu} \geq 0 \text{ the amount of flow}$$
 on edge $\{u,v\}$ going in the respective direction.

$$\forall e \in E \quad x_e = \left\{ \begin{array}{ll} 1 & \text{if } e \in E(S, V \setminus S). \\ 0 & \text{otherwise.} \end{array} \right.$$

Variables

$$\forall v \in V \quad f_v = \left\{ egin{array}{ll} 1 & ext{if the vertex v absorbs.} \\ 0 & ext{otherwise.} \end{array}
ight.$$

$$orall \{u,v\} \in E \quad f_{uv}, f_{vu} \geq 0 \text{ the amount of flow}$$
 on edge $\{u,v\}$ going in the respective direction.

$$\forall e \in E \quad x_e = \left\{ egin{array}{ll} 1 & \mbox{if } e \in E(S,V\setminus S). \\ 0 & \mbox{otherwise}. \end{array} \right.$$

$$\min \sum_{e \in F} x_e$$

Constraints

$$\begin{aligned} x_{\{u,v\}} &\geq f_u - f_v \quad \forall \{u,v\} \in E \\ x_{\{u,v\}} &\geq f_v - f_u \quad \forall \{u,v\} \in E \\ \sum_{v \in V, \{s,v\} \in E} f_{sv} &= k - 1 \\ f_s &= 1 \end{aligned}$$

$$\sum_{u \in V, \{u,v\} \in E} f_{uv} = \sum_{u \in V, \{v,u\} \in E} f_{vu} + f_v \quad \forall v \in V \setminus \{s\}$$

$$\sum_{u \in V} f_u &= k$$

Constraints

$$\begin{aligned} x_{\{u,v\}} &\geq f_u - f_v \quad \forall \{u,v\} \in E \\ x_{\{u,v\}} &\geq f_v - f_u \quad \forall \{u,v\} \in E \\ \sum_{v \in V, \{s,v\} \in E} f_{sv} &= k-1 \\ f_s &= 1 \\ \\ \sum_{u \in V, \{u,v\} \in E} f_{uv} &= \sum_{u \in V, \{v,u\} \in E} f_{vu} + f_v \quad \forall v \in V \setminus \{s\} \\ \sum_{u \in V} f_u &= k \\ (k-1) \cdot f_v &\geq \sum_{u \in V, \{uv\} \in E} f_{uv} \quad \forall v \in V \setminus \{s\} \end{aligned}$$

Constraints

$$\begin{aligned} x_{\{u,v\}} &\geq f_{u} - f_{v} \quad \forall \{u,v\} \in E \\ x_{\{u,v\}} &\geq f_{v} - f_{u} \quad \forall \{u,v\} \in E \end{aligned}$$

$$\sum_{v \in V, \{s,v\} \in E} f_{sv} = k - 1$$

$$f_{s} = 1$$

$$\sum_{u \in V, \{u,v\} \in E} f_{uv} = \sum_{u \in V, \{v,u\} \in E} f_{vu} + f_{v} \quad \forall v \in V \setminus \{s\}$$

$$\sum_{u \in V} f_{u} = k$$

$$(k - d(s,v)) \cdot f_{v} \geq \sum_{u \in V, \{uv\} \in E} f_{uv} \forall v \in V \setminus \{s\}$$

ILP properties

Lemma

The optimal solution (x^*, f^*) of ILP correspond to a MINIMUM CONNECTED k-CUT and vice versa.

ILP properties

Lemma

The optimal solution (x^*, f^*) of ILP correspond to a MINIMUM CONNECTED k-CUT and vice versa.

Lemma

The integrality gap between the integer linear program and its linear relaxation is at least k.

- d_{x} is a pseudo-metric on $V \times V o \mathbb{R}^+_0$; derived from x_e as a shortest path
- $\ensuremath{\mathrm{OPT_{LP}}}$ denotes the optimum of linear program relaxation

- d_x is a pseudo-metric on $V imes V o \mathbb{R}_0^+$; derived from x_e as a shortest path
- $\hfill OPT_{LP}$ denotes the optimum of linear program relaxation

Definition |

For a given graph G=(V,E) and a pseudo-metric $d:V\times V\to \mathbb{R}_0^+$, a ball around vertex $u\in V$ with radius $0\leq r\leq 1$ is a set $\{v\in V\mid d(u,v)\leq r\}$, denoted as $\mathcal{B}_d(u,r)$.

- **d**_x is a pseudo-metric on $V \times V \to \mathbb{R}^+_0$; derived from x_e as a shortest path
- $\hfill OPT_{LP}$ denotes the optimum of linear program relaxation

Definition

For a given graph G=(V,E) and a pseudo-metric $d:V\times V\to \mathbb{R}_0^+$, a ball around vertex $u\in V$ with radius $0\leq r\leq 1$ is a set $\{v\in V\mid d(u,v)\leq r\}$, denoted as $\mathcal{B}_d(u,r)$.

Lemma

For all vertices $v \in V$ the inequality $f_v \ge 1 - d_x(s, v)$ holds.

- d_x is a pseudo-metric on $V \times V \to \mathbb{R}_0^+$; derived from x_e as a shortest path
- $\hfill OPT_{LP}$ denotes the optimum of linear program relaxation

Definition

For a given graph G=(V,E) and a pseudo-metric $d:V\times V\to \mathbb{R}_0^+$, a ball around vertex $u\in V$ with radius $0\leq r\leq 1$ is a set $\{v\in V\mid d(u,v)\leq r\}$, denoted as $\mathcal{B}_d(u,r)$.

Lemma

For all vertices $v \in V$ the inequality $f_v \ge 1 - d_x(s, v)$ holds.

Lemma

For any $0 \le r < 1$ these bounds $1 \le |\mathcal{B}_{d_x}(s,r)| \le 1 + \frac{k-1}{1-r}$ holds.

Bounds

Lemma

Given a constant 0 < c < 1, let $\mathcal{I}_c = \{r \in \langle 0, 1 \rangle \mid e(\mathcal{B}_{d_x}(s, r), V \setminus \mathcal{B}_{d_x}(s, r)) > \frac{1}{c}\mathrm{OPT_{LP}}\}$. Then \mathcal{I}_c corresponds to a set of subintervals of $\langle 0, 1 \rangle$ and the sum of their length is at most c.

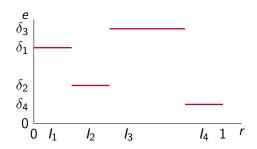
Bounds

Lemma

Given a constant 0 < c < 1, let $\mathcal{I}_c = \{r \in \langle 0, 1 \rangle \mid e(\mathcal{B}_{d_x}(s, r), V \setminus \mathcal{B}_{d_x}(s, r)) > \frac{1}{c}\mathrm{OPT_{LP}}\}$. Then \mathcal{I}_c corresponds to a set of subintervals of $\langle 0, 1 \rangle$ and the sum of their length is at most c.

Proof.

Use the fact: $\sum_{i=1}^{\ell} \delta_i |I_i| = OPT_{LP}$.



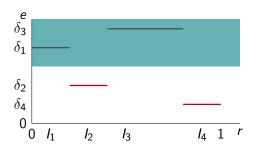
Bounds

Lemma

Given a constant 0 < c < 1, let $\mathcal{I}_c = \{r \in \langle 0, 1 \rangle \mid e(\mathcal{B}_{d_x}(s, r), V \setminus \mathcal{B}_{d_x}(s, r)) > \frac{1}{c}\mathrm{OPT_{LP}}\}$. Then \mathcal{I}_c corresponds to a set of subintervals of $\langle 0, 1 \rangle$ and the sum of their length is at most c.

Proof.

Use the fact: $\sum_{i=1}^{\ell} \delta_i |I_i| = OPT_{LP}$.



Algorithm

- we propose a bicriteria approximation algorithm for the MINIMUM CONNECTED *k*-CUT WITH SOURCE problem, and consequently also for MINIMUM CONNECTED *k*-CUT problem
- the technique we use is known as a *Ball growing technique* [4]

Algorithm

- we propose a bicriteria approximation algorithm for the MINIMUM CONNECTED k-CUT WITH SOURCE problem, and consequently also for MINIMUM CONNECTED k-CUT problem
- the technique we use is known as a *Ball growing technique* [4]

Theorem

For a given graph G = (V, E), $k \in \mathbb{N}$ and 0 < c < 1 there exists a polynomial time algorithm, which produces a connected cut S, such that $1 \le |S| \le \mathcal{O}(k)$ and $e(S, V \setminus S) \le \frac{1}{c}\mathrm{OPT}_{\mathrm{LP}}$.

Al	lgorith	ım

technique [4]

we propose a bicriteria approximation algorithm for the MINIMUM CONNECTED k-CUT WITH SOURCE problem, and consequently also for MINIMUM CONNECTED k-CUT problem
 the technique we use is known as a Ball growing

Theorem For a given graph G=(V,E), $k\in\mathbb{N}$ and 0< c<1 there exists a polynomial time algorithm, which produces a connected cut S, such that $1\leq |S|\leq \mathcal{O}(k)$

- and $e(S, V \setminus S) \leq \frac{1}{c} \mathrm{OPT_{LP}}$.

 proof follows from previous Lemmata and the fact, that the function is piece-wise constant
 - the stricter c we choose the worse |S| we may get, but there is no guarantee
 - lacktriangle the choice of c does not change the time complexity

Summary

defining MINIMUM CONNECTED k-CUT and MINIMUM CONNECTED k-CUT WITH SOURCE problems

Summary

- defining MINIMUM CONNECTED k-CUT and MINIMUM CONNECTED k-CUT WITH SOURCE problems
- proving NP-completeness

Summary

- defining Minimum connected k-cut and Minimum connected k-cut with source problems
- proving NP-completeness
- bicriteria approximation of LP relaxation with the usage of a growing ball technique

Thank you for your

attention.

Bibliography

- FEIGE, U.; KRAUTHGAMER, R. A Polylogarithmic Approximation of the Minimum Bisection. *SIAM Journal on Computing*. 2002, vol. 31, no. 4, pp. 1090–1118.
- GAREY, M.; JOHNSON, D.; STOCKMEYER, L. Some simplified NP-complete graph problems. *Theoretical Computer Science*. 1976, vol. 1, no. 3, pp. 237–267. ISSN 0304-3975.
- GAREY, M. R.; JOHNSON, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.
- GARG, N.; VAZIRANI, V. Multicommodity Flows and Approximation Algorithms. 1996, pp. 10–17.
- KRAUTHGAMER, R. Minimum Bisection. In: KAO, M.-Y. (ed.). *Encyclopedia of Algorithms*. New York, NY: Springer New York, 2016, pp. 1294–1297. ISBN 978-1-4939-2864-4.