
Notes on connected cuts
Tomáš Turek

April 4, 2025

Contents
1 Preliminaries 1

2 Connected cuts definitions 2
2.1 Single commodity connected cuts . 2
2.2 Multi commodity connected cuts . 2
2.3 Other cuts . 3

3 Absorptive flow and its linear program 3
3.1 Boundary of the absorptive flow . 4
3.2 Integer program . 4

3.2.1 Variables . 4
3.2.2 The mixed integer program . 4

3.3 Consider the distance from source . 5
3.3.1 Properties . 5

4 Approximation - naive 6

5 Another approximation 7
5.1 Improving the result – heuristic . 7
5.2 Algorithm for finding k-connected cut . 7

6 Example graphs 8
6.1 Star graph . 8
6.2 Comet graph . 8

7 More sources 8
7.1 Linear program . 9

7.1.1 Variables . 9
7.1.2 Constraints . 10
7.1.3 Optimization function . 10

8 NP hardness 10
8.1 Reduction from minimal bisection with source . 10
8.2 Reduction from minimal bisection without source . 10

8.2.1 Computing the size of the cut . 10

1 Preliminaries
We define graph G = (V,E) as usual. Then we talk about edges defined by a cut in the following way. For
vertices S ⊆ V we define E(S, V \S) = {e ∈ E s.t. |e∩S| = 1}, then the size of a cut is e(S, V \S) = |E(S, V \S)|.
Also we will talk about the induced subgraphs which will be denoted as G[S] for some vertices S ⊆ V . Just to
recall that graph is called connected if between every pair of vertices there exists a walk. Also in most cases
we will be considering graphs which are connected, but sometimes this is not necessary. Also we will be using
commonly use notion for number of vertices n = |V | and for edges as m = |E|. The neighborhood of a vertex
is denoted as N(v) and closed neighborhood as N [v].

One can already know some basic algorithmic aspects of some cut related problems. For example finding a
minimal cut in a graph can be done using flow algorithms. As an exercise the reader may see that this way we
actually obtain a subset S ⊆ V which will be indeed connected, i.e. the induced subgraph G[S].

1

Another well known problem is a maximal cut, which is known to be NP hard. But on the other hand there
exists an 0, 878 . . . -approximation algorithm.

Lastly we mention that [n] is an abbreviation for a set {1, 2, . . . , n}. Also the notion [a, b] is for a set
{a, a+ 1, . . . , b}.

computed. If we skip the very first one, we may use the result from Garg, which states a linear program
having all vertices as such result. Excluding the second one can be also computed via some approximation
algorithm for bisection. And Overlooking the last one we just use some search (BFS or DFS), because we don’t
care about the size of the result.

2 Connected cuts definitions
We will now proceed to some definitions of cuts which are in one way or another connected (meaning that they
induce a connected subgraph). We will start simply and build on that.

2.1 Single commodity connected cuts
Definition 1 (Connected cut). For a connected graph G = (V,E) we define connected cut as S ⊆ V for which
G[S] is connected. The cut itself is E(S, V \ S). Later on we may exchange if we will talk about vertices or
edges. Also a graph (V,E \ E(S, V \ S)) is a disconnected graph.

Now we will like to minimize the size of the cut, i.e. the value of e(S, V \S). Also note that the requirement
for G being connected is actually not necessary. Sometimes we may even define a connected cut with specific
source vertex. This can be formulated by the next definition 2.

Definition 2 (Connected s-cut). For a connected graph G = (V,E) and given vertex s ∈ V we define connected
s-cut as S ⊆ V for which G[S] is connected and also s ∈ S.

This is pretty much the same problem as in previous definition 1. Note that we would also like to minimize
the size of the cut, i.e. e(S, V \ S). And if we can solve it for the connected s-cut we may also apply it for all
s ∈ V to get the value for general connected cut. Some may already see that the property G being connected
is still not necessary.

Reader could already know that commonly used cut is for defined source and target distinct vertices. We
could also use it in our case and only extend the previous definition by saying that t /∈ S. It is somewhat
tempting to also require that G[V \S] is supposed to be also connected. Therefore we can get the full connected
s− t cut.

Definition 3 (Connected s− t cut). For a connected graph G = (V,E) and given two distinct vertices s, t ∈ V
we define connected s− t cut as S ⊆ V for which all following properties hold.

1. s ∈ S and t /∈ S.

2. Both G[S] and G[V \ S] are connected.

2.2 Multi commodity connected cuts
Now we can furthermore generalize the notion of connected cuts to multi-way connected cuts.

Definition 4 (Multi-way connected cut with sources). For a connected graph G = (V,E) and pairwise distinct
vertices s1, s2, . . . , sk ∈ V for k ∈ N we define connected cut as partition V = {V1, V2, . . . , Vk} of vertices (that
is

⋃
i=1,...,k Vi = V and for i 6= j Vi ∩ Vj = ∅) such that the following holds:

1. ∀i ∈ [k] : si ∈ Vi and

2. ∀i ∈ [k] : G[Vi] is connected.

In this specific definitions we may look at our problem from two perspectives. Those two options can be seen
by the optimization function for the given problem. Sum version is generally more easy to find the solution, or
at least very good approximation. On the other hand optimizing over the max function can be way more tricky.
Observe that the sum size is already computed with multi-commodity cut. Though some modifications has to
be done.

• Sum size as
∑

i<j E(Vi, Vj).

• Max size as maxi∈[k] E(Vi, V \ Vi).

2

Also we may define Flexible multi-way connected cut as relaxing the previous problem. That is the
partition will have l partitions where 0 < l ≤ k and only l sources are representing their partition. So
∀i ∈ [l],∃k : sk ∈ Vl.

We may also present another problem which is similar to the previously mentioned one, the only change is
that we do not have predefined sources.

Definition 5 (Multi-way connected cut). For a connected graph G = (V,E) and k ∈ N we define connected cut
as partition V = {V1, V2, . . . , Vk} of vertices (that is

⋃
i=1,...,k Vi = V and for i 6= j Vi ∩ Vj = ∅) such that the

following holds:

1. ∀i ∈ [k] : G[Vi] is connected.

Then we would like to minimize the maximum maxi 6=j e(Vi, Vj).

2.3 Other cuts
Now we can even further increase the number of requirements. In this case to the size of |S|. We will also state
what is the optimization function and hence establish a problem.

Problem 1 (k-connected cut). For a connected graph G = (V,E) we say S ⊆ V is k-connected cut such that
all properties hold:

1. |S| = k.

2. G[S] is connected.

3. The value e(S, V \ S) is minimized.

From algorithmic perspective we may also have given source vertex s ∈ V , but as it was stated before we
may solve the general case by running |V | times the algorithm for the problem with source.

Note that choosing only two properties from all three can be

3 Absorptive flow and its linear program
We will be now talking about an absorptive flow. Firstly we will state the problem in a common sense. For a
graph and a source we get a flow which flows through the graph and every time it goes through a vertex some
of the flow gets absorbed into the given vertex. After that we will define a boundary which is induced by such
flow and later on state an integer program and its linear approximation. Now we properly state the instance.

Definition 6 (Absorptive flow). For a graph G = (V,E) and a vertex s ∈ V , also called the source, and
for k ∈ N, such that |V | ≥ k, we define absorptive flow as a tuple of functions denoted as (fV , fE), where
fV : V → R and fE : E → R. Now these two function must have these properties.

1.
∑

v∈V fV (v) = k, that is every part of the flow gets absorbed,

2. fV (s) = 1,

3. ∀v ∈ V : 0 ≤ fV (v) ≤ 1, all vertices are bounded,

4.
∑

v∈V,(s,v)∈E fE(s, v) = k − 1, the flow starts from the source,

5. ∀e ∈ E : 0 ≤ fE(e), the flow has to be non-negative, but can be unlimited,

6. ∀v ∈ V \ {s} :
∑

u∈V,(u,v)∈E fE((u, v)) =
∑

u∈V,(v,u)∈E fE((v, u)) + fV (v), thus the whole flow continue
unless part of it is absorbed.

We will be calling function fE a flow and fV a vertex flow or absorption. Reader can see this flow in a
following way. We will have k resources in s and we will be pushing the flow throughout the graph. The targets
are dynamically created based on their absorption. In another way there we can imagine having a target t which
is connected to all vertices. The demand is k for such vertex t.

One can already see that it resembles a linear program. Some can expect we would define a size of the flow,
but in this special instance we won’t be defining it, since the main purpose is to look at the boundary (cut),
which is defined by the flow. So now we will define it. But also in that case we would like to enforce that when
a flow passes through a vertex then some of the value gets absorbed. This will lead to a connected absorption
of vertices.

3

3.1 Boundary of the absorptive flow
Firstly we will define S ⊆ V as the vertices which have nonzero absorption, that is ∀v ∈ S : fV (s) > 0. Then
the boundary induced by an absorptive flow is defined as E(S, V \ S) and its size as e(S, V \ S). We will
furthermore want to minimize the size of such boundary under the additional condition of connectivity.

So far the only property is that s ∈ S, which can be seen only from the definition. Next observations come
from the linear program and its properties.

3.2 Integer program
In this section we will establish the linear program which works with this flow and its boundary. We will be
forcing connectivity of the subgraph G[S] thus the term boundary is in a sense same as cut. Also when we have
a graph G = (V,E) we will modify the graph by setting edges to be directed in both directions. That is from
edge {i, j} we create two arcs (i, j) and (j, i).

3.2.1 Variables

Firstly we declare the variables for edges and for vertices.

fv =

{
1 if it absorbs the flow and
0 otherwise. (1)

fuv ∈ [0, k] is for the amount of flow on the edge uv. (2)

xuv =

{
1 if uv ∈ E(S, V \ S) and
0 otherwise. (3)

See that these variables arise only from the definition of the problem. There is only change of fuv being
limited by k, which can be easily observed to be the same as unlimited. We will be calling variables (1) as an
absorption, variables (2) as flow and variables (3) as cut edges.

3.2.2 The mixed integer program

Now we will show the whole MIP formulation. And describe the constraints.

min
∑
e∈E

xe (4a)

xuv ≥ fu − fv ∀{uv} ∈ E (4b)
xuv ≥ fv − fu ∀{uv} ∈ E (4c)∑

v∈V,sv∈E

fsv = k − 1 (4d)

fs = 1 (4e)∑
u∈V,uv∈E

fuv =
∑

u∈V,vu∈E

fvu + fv ∀v ∈ V, s 6= v (4f)

∑
u∈V

fu = k (4g)

(k − 1) · fv ≥
∑

u∈V,{uv}∈E

fuv ∀v ∈ V \ {s} (4h)

fv ∈ {0, 1} ∀v ∈ V (4i)
fuv ∈ R+ ∀{u, v} ∈ E (4j)
xuv ∈ {0, 1} ∀{u, v} ∈ E (4k)

First of all the objective function (4a) follows from the fact that we want to minimize the size of the cut.
Then the inequalities (4b) and (4c) are for the inequality xuv ≥ |fu − fv|; that is the difference between the
absorbance. Now we need to establish the flow to be proper. Therefore the equality (4d) means that we have
k resources which are distributed from s and so the equality (4e) includes the source to be the starting point
of the flow. Next we have a slightly changed Kirchoff’s law (4f); meaning the amount of flow going to vertex
will either flow out or the vertex will absorb some of it. Lastly we have the inequality (4h) which enforces the
connectivity. If we have non-zero flow going to the vertex we have to absorb some portion of it. Lastly (4i),
(4j) and (4k) only lists the boundaries of these variables.

4

3.3 Consider the distance from source
In this subsection we will provide even better model, which arises from the previously mentioned one (4). This
time we will also use the notation d(u, v) for the shortest path between vertices u and v. This is a well known
property of graphs, which can be computed in polynomial time (e.g. using Djisktra’s algorithm). Therefore we
will increase what we want the vertex absorb by setting the fraction 1

k−1 to 1
k−d(s,u) for every u. That is we

combine two different metrics of path length. One in terms of standard length and the other in terms of flow.
The mixed integer program is as follows.

(k − d(s, v)) · fv ≥
∑

u∈V,{uv}∈E

fuv ∀v ∈ V \ {s} (5a)

Hence we take our MIP (4) and replace inequality (4h) with more strict inequality (5a). Unfortunately this
does not lead to a better algorithm. That is it enforces a bigger absorption and also implicitly we get that
vertices which are further away won’t be considered in any way. So that it may help the program solver for a
faster searching of an optimal solution.

3.3.1 Properties

Lets talk about some crucial properties of this mixed integer program.

Observation 1. Every vertex in the flow absorb.

Proof. See that due to the constraint (4h) whenever a flow goes inside the vertex we must set the vertex to
absorb some portion of the flow. Exactly 1 in the case of integer program.

Observation 2. A set S = {v|fv = 1} defines a connected induced subgraph G[S].

Proof. Since fs = 1 we know that s is inside the S. For contradiction assume there is a vertex v ∈ S which is
not connected to the source s by a path. Because fv = 1 we must have that there is a flow over this vertex due
to the fifth constraint (4f). And since there is a flow to the vertex v which starts in s there is also a walk from
s to v, therefore no such vertex v exists and all vertices are connected to s and hence they induce connected
subgraph.

Lemma 1. The optimal solution x∗ and f∗ correspond to a minimal k-connected cut and vice versa.

Proof. We will show how one solution can be translated from one to the other. Then the optimality will arise
from this fact. Otherwise we could create the solution by translation followed by finding a better one and
translating it back and hence obtaining a better solution.

Firstly suppose we have an optimal solution of the mixed integer program. Then we define the cut as
S = {v|fv = 1}. From the previous observations we know that the induced subgraph G[S] is connected. And
also from the constraint (4g) we have that |S| = k.

Suppose we have S as an minimal k-connected cut. Lets build a shortest path tree starting from s where
we consider only the graph G[S]. Lets define set fV to all vertices in S to 1 and to the rest 0. Also define x
to be 1 only if exactly one end is inside S. Lastly the function fE will be defined by the shortest path tree.
That is from s we will send the flow with the size of the sub-tree and recursively call on that. See that it satisfy
all constraints. xuv is satisfied purely from the definition, the sum of outgoing flow from s is equal to the sum
of all sub-trees which is indeed k − 1. Also there is k vertices with 1 value fv and also fs = 1. From the tree
structure it is easily observed that the Kirchoff’s law is satisfied. And also the connected constraint.

Lemma 2 (Integrality gap). The integrality gap between the presented MIP and its linear relaxation is Ω(k).

Proof. Suppose we have k ∈ N and a clique graph with N 3 n ≥ k vertices. The optimal value of MIP
will choose arbitrarily k vertices, because we cannot get better solution by exchanging one vertex for another.
That means we will have n − k vertices in the rest. The size of the cut is therefore k(n − k). On the other
hand in the linear relaxation we will send from s the same value to all vertices so that only n − 1 edges
will have non-zero cut-value. For n − 1 vertices we will split k − 1 equally, hence we will have a cut of size
(n− 1) ·

(
1− k−1

n−1

)
= n− 1− k + 1 = n− k. Hence the integrality gap is in this case k.

Conjecture 1. The integrality gap between the presented MIP and its linear relaxation is O(()k).

Observation 3. We may exchange our LP solution so that the flow induces a tree rooted at s.

5

Proof. Whenever there would be a flow going across forming a cycle we may revert this value from all the edges
along the path back to the root and send it via the correct branch. This we can do for all such edges. The
values are not changed.

Lemma 3. The approximation ratio of a simple greedy algorithm is O(k). ?

Proof. We will firstly assume that the vertices are a set of [n] numbers where s = 0. Therefore we have them
linearly ordered. Now we run depth first search from vertex s and record its DFS-tree. Observe that every time
we choose one vertex based on the absorption we decrease the size of the cut by 1 and at most increase it by
the degree of the vertex - 1. This holds in MIP. In the linear relaxation we decrease the cut by its difference
from the previous vertex and we may increase it by the flows to its neighbors.

Lets denote OPTLP as the result of our LP. We can actually compute the result precisely. Let s = v1 and
v1, v2, . . . , vk be the vertices selected to the set S. Then we have the following.

OPTLP −

 ∑
1≤i<j≤k

xvivj + xvjvi

+

 k∑
i=1

∑
u∈N(vi)\S

(1− xviu) + (1− xuvi
)

−
 ∑

u6=v∈V \S

xuv + xvu

 (6)

Now lets denote x̂uv = max(xuv, xvu). Observe that if xuv = xvu; hence x̂uv = xuv = xvu. Now we may
rewrite our equation (6).

OPTLP −
∑

1≤i<j≤k

2x̂vivj +

 k∑
i=1

∑
u∈N(vi)\S

2− 2x̂viu

−
 ∑

u 6=v∈V \S

2xuv

 (7)

Keep in mind we have doubled our edges so the result itself is twice the optimum. Hence the real optimum
OPT can be lower bounded by OPTLP/2. That is since the linear relaxation gives better fractional result and
we have doubled our edges hence the division by 2. Hence we divide our equation (7) and upper bound it by
OPT.

≤ OPT−
∑

1≤i<j≤k

x̂vivj +

 k∑
i=1

∑
u∈N(vi)\S

1− x̂viu

−
 ∑

u 6=v∈V \S

xuv

 (8)

Now see that if the first sum is equal to 0 then all other sums are also 0. That is due to the fact, that
xuv = 0 for all vertices in S and therefore the absorptions fu are all same. Because we set fs = 1 that means
we have absorbed everything in S. Lets consider the case that the sum is non-zero.

4 Approximation - naive
The final approximation we will employ is quite simple. That is we will have a vertex and a set of already chosen
vertices. Firstly add s to the set and set it as a current vertex. Then always look at neighbors with non-zero
vertex flow and consider them as another choice. With the flow values choose one with these probabilities.

Algorithm 1 Approximation of the values from linear program.
Require: A graph G with source s and capacity k and absorption f on vertices from LP.
Ensure: A connected cut S.

1: S ← {s} and cv ← s.
2: while |S| < k do
3: for all neighbors v of cv do
4: If v /∈ S and f(v) > 0 add it to consideration.
5: end for
6: Choose one vertex u from the considered ones based on their absorption f .
7: S ← S ∪ {u} and cv ← u.
8: end while
9: return S.

6

5 Another approximation
In this section lets use the result of our LP (4) with distances (5). Lets denote dx as a metric on V × V → R+.
For vertices u, v ∈ V we will have dx(u, v) as the shortest path between these two vertices, where the length of
edges are defined by the cut variables xe.

Definition 7. Lets define a ball B(u, r) as a set {v ∈ V |dx(u, v) ≤ r} for u ∈ V and r ∈ [0, 1].

Observation 4. B(s, 1) = V .

Proof. For contradiction say that some vertex v /∈ B(s, 1). Then dx(s, v) > 1, which means that starting from
source vertex s with value fs = 1 we are decreasing the value of absorption along the path for the vertices.
Every time if some amount is decreased then the same amount is on the edge xe. And since we cannot get
the values fv lower than zero, then there must be some vertex on the path which has bigger value than its
predecessor, which contradicts that it is shortest path.

Lemma 4. For all vertices v ∈ V the inequality fv ≥ 1− dx(s, v) holds.

Proof. Lets prove this by an induction. Firstly see that for s we obtain fs ≥ 1 − 0 = 1 which holds from the
equality (4e). Then for all neighbors of s we have fv ≥ 1 − dx(s, v) ≥ 1 − xsv and from the inequalities (4b)
and (4c) we have that fv ≥ 1− fs + fv = 1− 1 + fv = fv. Thus it also holds.

Now lets consider a vertex v ∈ V and for contradiction suppose that fv < 1 − dx(s, v) and that it is the
closest vertex in terms of dx to the source with wrong value. Hence for all neighbors which are closer it must
hold. Take the one which has shortest path from source summed with the value of the common edge. Denote
this vertex u. Therefore fu ≥ 1− dx(s, u). Now 1− dx(s, v) = 1− (dx(s, u) + xuv) ≤ 1− dx(s, u)− (fu − fv) =
1− dx(s, u)− fu + fv ≤ fv. Which is a contradiction.

Now the algorithm will be in a following matter. We will uniformly at random choose r ∈ [0, 1] and set
S = B(s, r). In a real implementation we will try this multiple times with different r values and try to find the
best algorithm. We must point out that indeed this algorithm will result in bicriterial approximation.

Lemma 5. The expected values of the cut and the size of B(s, r) is optimal.

Proof. Firstly see that the probability P[e ∈ E(B(s, r), V \ B(s, r))] = xe. This can be seen by a simple
observation. The edge e will be in cut if r will be inside the bounds [α, α + xe] for some α ∈ R+

0 . But the
probability is the same as in the case of [0, xe]. Hence the expected value

E[e(B(s, r), V \ B(s, r))] =
∑
e∈E

P[e ∈ E(B(s, r), V \ B(s, r))] =
∑
e∈E

xe = OPTLP.

Now we will look at the size of the set B(s, r).

P[v ∈ B(s, r)] = P[dx(s, v) ≤ r] ≥ P[1− fv ≤ r] = fv

For the last equality see that having r larger than 1 − fv is same as the value of fv itself, for example if fv is
closer to 1 the the probability is relative high oppositely to the case where fv is close to zero then the value of
r must be close to 1. And the previous inequality follows from the previous lemma 4.

5.1 Improving the result – heuristic
Also there is the fact that we want to have cut edges only when the flow is really low. Otherwise it does not
make any sense. So either we may be improving our linear program along the way or just consider this during
the approximation. That is we will call the edges with flow > 1 and cut > 0 as a bad edges. Then we will
have a procedure which will augment the linear program. We will gradually add bad edges to the LP statement
where we set these to 0.

Note that this augmentation will in worse case go through all edges, thus m = |E|. We should take a
while and convince ourselves that this improvement does not diverge from the optimal solution, moreover it will
get closer to some optimal solution. On the other hand the optimal value can be different; see necklace-alt
experiment.

5.2 Algorithm for finding k-connected cut
Now we will present the whole algorithm which will find an optimal k-connected cut.

Conjecture 2. The above mentioned linear program with augmentation and approximation algorithm will find
the optimal connected k-cut for trees in polynomial time.

7

Algorithm 2 Augmentation
Require: Graph G with source s and capacity k.
Ensure: Augmented LP.

1: Solve the original LP.
2: F ← ∅ and cont← false.
3: while cont do
4: cont← false
5: for all edges e in G do
6: if fe > 1 and xe > 0 then
7: F ← F ∪ {e}.
8: cont← true.
9: end if

10: end for
11: for all e in F do
12: Set x(e) = 0 in the LP.
13: end for
14: Solve updated LP and update solution.
15: end while
16: return Last LP.

Algorithm 3 k-connected cut algorithm.
Require: A graph G with source s and capacity k.
Ensure: A connected cut S which minimizes its cost.

1: S ← ∅
2: Create a LP (5).
3: Solve the LP and run Approximation (1) n times and update S.
4: Augment the LP via algorithm (2).
5: Solve the LP and run Approximation (1) n times and update S.
6: return S.

6 Example graphs
We will be looking at a few graphs and mostly their classes and try to observe some properties.

6.1 Star graph
Definition 8. Star graph is a graph with one vertex with degree ∆ and the rest of the vertices have degree 1
and are connected to the main one.

s v u

Figure 1: Star graph G with special vertices v, s and u.

6.2 Comet graph
Definition 9. Comet graph contain a star and a tail – hence the name comet.

7 More sources
Now we will try to use our linear program to also introduce a solution for the multi-commodity case; when we
have more sources and all of the parts have to be connected. In this particular case we are considering the case

8

s v u

Figure 2: Comet graph G.

with minimizing the sum.

7.1 Linear program
We will now fully establish the linear program, derived from an integer program by its relaxation.

min
∑
e∈E

k∑
i=1

xi
e (9a)

xi
uv ≥ f i

u − f j
v ∀{uv} ∈ E ∀j ∈ [k] (9b)

xi
uv ≥ f j

v − f i
u ∀{uv} ∈ E ∀j ∈ [k] (9c)∑

v∈V,sv∈E

f i
siv = ni − 1 ∀i ∈ [k] (9d)

fsi = 1 ∀i ∈ [k] (9e)∑
u∈V,uv∈E

f i
uv =

∑
u∈V,vu∈E

f i
vu + f i

v ∀v ∈ V, s 6= v ∀i ∈ [k] (9f)

∑
u∈V

f i
u = ni ∀i ∈ [k] (9g)

(n− k) · f i
v ≥

∑
u∈V,{uv}∈E

f i
uv ∀v ∈ V \ {s} ∀i ∈ [k] (9h)

k∑
i=1

ni = n (9i)

k∑
i=1

f i
v = 1 ∀v ∈ V (9j)

f i
v ∈ {0, 1} ∀v ∈ V ∀i ∈ [k] (9k)

f i
uv ∈ R+ ∀{u, v} ∈ E ∀i ∈ [k] (9l)

xi
uv ∈ {0, 1} ∀{u, v} ∈ E (9m)

Or alternatively if we want to solve min-max problem then we can switch the function (9a) by (10a) and
also add (10b).

min c (10a)∑
e∈E

xi
e ≤ c ∀i ∈ [k]. (10b)

7.1.1 Variables

Instead of one flow we will have multiple flows. That is f i
v ∈ {0, 1} for all i ∈ [k] and v ∈ V . Therefore we will

also have f i
e ∈ R+

0 for all i ∈ [k] and e ∈ E. We now do not know the size of each part, hence we also introduce
variables ki ∈ N for all i ∈ [k]. Lastly we need cut variables xi

e ∈ {0, 1} for all i ∈ [k].

9

7.1.2 Constraints

Some constraints are quite easy to establish. Firstly we set
∑k

i=1 k
i = |V | that means that we have covered all

vertices. Also ∀v ∈ V :
∑k

i=1 f
i
v = 1, that is every vertex is in one of the absorptive flow. Now we also hard

code that f i
si = 1 meaning that si is in i-th part. The cut we will be similar to the single source problem, that

is xi
e ≥

∣∣f i
u − f i

v

∣∣ for e = {u, v} and all i ∈ [k].
There is way more constraints, but they are just translated from the single source absorptive flow to multiple

ones. Some of them were even already presented. Note that the constraint which enforces the flow to be
connected must change; otherwise we would have a quadratic constraint. But switching n for k will do the job,
but it will be little worse.

Also we want to emphasize that there will be one flow which will dominate. That is ∀e ∈ E, i ∈ [k] :∣∣∣f i
e −

∑
j 6=i f

j
e

∣∣∣ > 1/2.

7.1.3 Optimization function

Now we have two options for optimizing the values. Firstly the sum would be min
∑

e∈E

∑
i∈[k] x

i
e. For min-max

problem we would do a simple trick, which would be adding a constraints ∀i ∈ [k] :
∑

e∈E xi
e ≤ c and now we

will minimize min c.

8 NP hardness
It is crucial to ask ourselves if the problem k-connected cut is NP-complete problem. If we show that it is
indeed that hard then we might not expect any polynomial time algorithm which solves it. In this section we
will show a polynomial reduction from bisection problem.

8.1 Reduction from minimal bisection with source
Lets have a graph G = (V,E) for a minimal bisection problem. We will create a graph G′ = (V ∪ {s}, E ∪
{{u, s}|∀u ∈ V }) and also set k = n/2 + 1. Now we could use k-connected cut with source s.

Lemma 6. The optimal value of k-connected cut with source for the instance (G′, k, s) is same as for minimal
bisection on graph G subtracted by n/2.

Proof. Since s ∈ S then we have k− 1 = n/2 many vertices we have to choose to add to S. Since the cut edges
between s and the rest of the graph will always be n/2 then we can only minimize the cut within the graph G.
The connectivity of the k-connected cut does not change the result since all vertices from V are connected to
s anyway. Hence we want to find a set of size n/2 which minimizes the cut between them, which is exactly the
problem of minimal bisection.

8.2 Reduction from minimal bisection without source
Now we will show a reduction from minimal bisection for the problem of k-connected cut without source. The
reduction itself will be in a following way. Firstly check if the given graph is a clique. This can be done by
checking if all vertices have degree n− 1; hence in polynomial time. If it is a clique run k-connected cut on the
graph for k = n/2. If not then create auxiliary graph G′ = (V ′, E′). Start by creating three copies of G that
is Gi = (Vi, Ei) for i ∈ {1, 2, 3}. Now create v′

⋃3
i=1 Vi and E′ =

⋃3
i=1 Ei ∪

⋃3
i=1{{u, v}|∀i 6= j ∈ {1, 2, 3}∀u ∈

Vi∀v ∈ Vj}). Now run k-connected cut on the graph G′ for k = 3/2n.

8.2.1 Computing the size of the cut

Lets now compute the size of the cut. Lets say we have chosen αin vertices from Gi where αi ∈ [0, 1] and∑3
i=1 αi = 3/2. Denote the subsets as Si respectively to their parts of Gi. Now the size of the cut S =

⋃3
i=1 Si

of G′ can be computed precisely.

e(S, V ′ \ S) =
3∑

i=1

∑
j∈{1,2,3};j 6=i

αin(1− αj)n+

3∑
i=1

e(Si, Vi \ Si) (11)

When all αi’s would be equal to 1/2 then we would obtain 3/2n2 for the first term. Observe that if either
one of the αi’s would exactly equal to 1/2 then we have found our minimal bisection. That is due to the fact,
that the interaction between three copies will be same for any 1/2 choice of vertices therefore we would minimize
such inner cut.

10

G1

S1

G2

S2

G3

S3

Lets now say that none of the αi’s are equal to 1/2. Therefore one must be greater than 1/2 and also one
must be lesser. Let us update the equation (11). We can also use the fact that α3 = 3/2− α1 − α2.

e(S, V ′ \ S) =
3∑

i=1

∑
j∈{1,2,3};j 6=i

αin(1− αj)n+

3∑
i=1

e(Si, Vi \ Si)

= α1n
2(1− α2) + α1n

2(1− α3) + α2n
2(1− α1) + α2n

2(1− α3)+

+ α3n
2(1− α1) + α3n

2(1− α2) +

3∑
i=1

e(Si, Vi \ Si)

= 2α1n
2 − α1α2n

2 − α1α3n
2 + 2α2n

2 − α1α2n
2 − α2α3n

2+

+ 2α3n
2 − α1α3n

2 − α2α3n
2 +

3∑
i=1

e(Si, Vi \ Si)

= 2α1n
2 − 2α1α2n

2 − 2α1α3n
2 + 2α2n

2 − 2α2α3n
2+

+ 2α3n
2 +

3∑
i=1

e(Si, Vi \ Si)

= 2α1n
2 − 2α1α2n

2 − 2α1(3/2− α1 − α2)n
2 + 2α2n

2 − 2α2(3/2− α1 − α2)n
2+

+ 2(3/2− α1 − α2)n
2 +

3∑
i=1

e(Si, Vi \ Si)

= 2α1n
2 − 2α1α2n

2 − 3α1n
2 + 2α2

1n
2 + 2α1α2n

2 + 2α2n
2 − 3α2n

2 + 2α1α2n
2 + 2α2

2n
2+

+ 3n2 − 2α1n
2 − 2α2n

2 +

3∑
i=1

e(Si, Vi \ Si)

= 3n2 − 3α1n
2 − 3α2n

2 + 2α1α2n
2 + 2α2

1n
2 + 2α2

2n
2 +

3∑
i=1

e(Si, Vi \ Si)

= n2
(
3− 3α1 − 3α2 + 2α1α2 + 2α2

1 + 2α2
2

)
+

3∑
i=1

e(Si, Vi \ Si)

(12)

We can observe or use any plotting tool to see that the term
(
3− 3α1 − 3α2 + 2α1α2 + 2α2

1 + 2α2
2

)
is

minimized if α1 = α2 = 1/2. You may see the Fig. 3.
Without loss of generality we may assume that α1 > 1/2 and α2 < 1/2 due to the fact, that at least one

must be larger and one lower. Now we can also assume that α3 < 1/2 because if that won’t be the case then
we could always take the complements S′

i := Vi \ Si for all i’s resulting in this case. See that the size of the
cut is same. For contradiction suppose that this cut minimizes the sum. We can now add all edges between all
pairs of vertices within Si’s and Vi \ Si’s while not increasing the optimum but making it way more expensive
to take halves, i.e. all αi = 1/2.

Lets compute the rise possible increase in the inner cuts.

11

0
0.2 0.4 0.6 0.8 1 0

0.5

1

2

3

x

y

Figure 3: Plotted function f(x, y) = 3− 3x− 3y + 2xy + 2x2 + 2y2.

= 1/2n2(α1 − 1/2) + 1/2n2(1− α2 − 1/2) + 1/2n2(1− α3 − 1/2)

= 1/2α1n
2 − 1/4n2 + 1/4n2 − 1/2α2n

2 + 1/4n2 − 1/2α3n
2

= 1/2α1n
2 − 1/2α2n

2 + 1/4n2 − 1/2(3/2− α1 − α2)n
2

= 1/2α1n
2 − 1/2α2n

2 + 1/4n2 − 3/4n2 + 1/2α1n
2 + 1/2α2n

2

= α1n
2 − 1/2n2 = n2(α1 − 1/2)

(13)

So that in total we would have n2+α1n
2+

∑3
i=1 e(Si, Vi\Si). Now 3n2−3α1n

2−3α2n
2+2α1α2n

2+2α2
1n

2+

2α2
2n

2+
∑3

i=1 e(Si, Vi\Si)−
(
n2 + α1n

2 +
∑3

i=1 e(Si, Vi \ Si)
)
= 2n2−4α1n

2−3α2n
2+2α1α2n

2+2α2
1n

2+2α2
2n

2.
We want to showcase that this value will be for x ∈ (1/2, 1] and y ∈ [0, 1/2) is always > 0.

0.6
0.8

1 0

0.2

0.4

0

0.5

x

y

Figure 4: Plotted function f(x, y) = 2− 4x− 3y + 2xy + 2x2 + 2y2.

Links
• Anupam Gupta, Kunal Talwar: Approximating unique games, 2006

• Uriel Feige†, Robert Krauthgamer: Minimum Bisection, 2001

• Min max and small set expansion

• Approximation algorithms for maximally balanced connected graph partition

• On size-constrained minimum s–t cut problems and size-constrained dense subgraph problems

• On the minimum s− t cut problem with budget constraints

12

https://www.semanticscholar.org/paper/Approximating-unique-games-Gupta-Talwar/a90ecfd407e1730c9039fdc46e7efefcc46dcfda
https://www.khoury.northeastern.edu/home/austin/papers/bisection.pdf
https://epubs.siam.org/doi/abs/10.1137/120873996
https://link.springer.com/article/10.1007/s00453-021-00870-3
https://www.sciencedirect.com/science/article/pii/S0304397515009378
https://link.springer.com/article/10.1007/s10107-023-01987-9

0.6
0.8

1 0

0.2

0.4

0

0.5

x

y

Figure 5: Plotted function f(x, y) = 1− 3 ∗ x− 2 ∗ y + 2 ∗ x ∗ y + 2 ∗ x2 + 2 ∗ y2.

• Balanced Crown Decomposition for Connectivity Constraints

• (Almost) Tight Bounds and Existence Theorems for Single-Commodity Confluent Flows, 2007

• Polylogarithmic Approximations for the Capacitated Single-Sink Confluent Flow Problem, 2015

• R. K. Ahuja, T. L. Magnati, J. B. Orlin. Network Flows: Theory, Algorithms, and Applications, Pearson,
1993.

13

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.26
https://www.cs.cornell.edu/~rdk/papers/conflu.pdf
https://ieee-focs.org/FOCS-2015-Papers/8191a748.pdf

	Preliminaries
	Connected cuts definitions
	Single commodity connected cuts
	Multi commodity connected cuts
	Other cuts

	Absorptive flow and its linear program
	Boundary of the absorptive flow
	Integer program
	Variables
	The mixed integer program

	Consider the distance from source
	Properties

	Approximation - naive
	Another approximation
	Improving the result – heuristic
	Algorithm for finding k-connected cut

	Example graphs
	Star graph
	Comet graph

	More sources
	Linear program
	Variables
	Constraints
	Optimization function

	NP hardness
	Reduction from minimal bisection with source
	Reduction from minimal bisection without source
	Computing the size of the cut

