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Chapter 1

Markov chains

”Some type of an automata, that represent probability space. It needs to have special properties.”

Machine working Machine not working

0.9

0.01

0.1

0.99

Figure 1.1: Example of a Markov chain.

1.1 Model
• States: S it is usually finite and sometimes only countable.

• sequence X0, X1, X2, . . . of random variables with values in S

• Xt+1 depends only on Xt

• Pr[Xt+1 = j|Xt = i] = pij where i, j ∈ S

Definition 1. Sequence of r.v. X0, X1, X2, . . . is a Markov chain if:

• ∃ countable S : Rng Xt ⊂ S ∀t

• ∀t ∈ N ∀a0, a1, a2, . . . , at+1 ∈ S

Pr[Xt+1 = at+1|X0 = a0, X1 = a1, . . . , Xt = at] = Pr[Xt+1 = at+1|Xt = at]

This means that Markov chain has the property of being memory-less and this probability written above is
called transition probability. We can map all elements from S to a number from range 1, 2, . . . , n and then we
can build transition matrix.

P =


p11 p12 p13 . . .
p21 p22

p31
. . .

...


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Where pij means going from i to j. All pij ≥ 0 and the sum of each row is 1. Also we can build transition
graph representing this Markov chain. In that graph V = S and arcs exists if (ij) : pij > 0.

Now we look at distribution, or PMF of Xk = π(k) where π(k) =
(
π
(k)
1 , π

(k)
2 , π

(k)
3 , . . .

)
and the sum is 1.

Then we may see that π
(k)
j = Pr[Xk = j]. We will be calling π(0) an initial state.

Then we can see that π(1) = π(0)P as multiplication by transition matrix. We can generalize this to:

π(k) = π(k−1)P

Theorem 1. For any MC with transition matrix P we have π(k) = π(0)P k and π(k+1) = π(t)P k.

Proof. Proof will be by induction. So π(k+1) = π(k)P = π(0)P kP = π(0)P k+1.

Definition 2. K-step transition is defined as:

rij(k) := Pr[from i to j in k steps]
= Pr[Xk = j|X0 = i]
= Pr[Xt+k = j|Xt = i]

rij(1) = pij

Observation.
rij(k) = π

(k)
j if π0 = (0, 0, . . . , 0, 1, 0 . . . , 0)

Where 1 is on i-th position. Also:

π
(k)
j = (π0P k)j =

(
(0, 0, . . . , 0, 1, 0 . . . , 0)P k

)
j
= (P k)ij

1.2 Chapman-Kologorov formula
rij(k) = (P k)ij

rij(k + l) =
∑S

t=1 rit(k)rtj(l)

rij(k + 1) =
∑S

t=1 rit(k)ptj

Definition 3. j is accessible from i if

(j ∈ A(i), i → j)
m

Pr[∃k ≥ 0 : Xk = j|X0 = i] > 0
m∑∞

k=0 rij(k) > 0
m

∃ a discrete path from i to j
in the transition graph

Definition 4. i and j from S are commuting states (i ↔ j) iff i → j and j → i.

Lemma 1. ↔ is an equivalence relation.

Proof. We need to show that it satisfies reflexivity, symmetry and transitivity.

1. i ↔ i which means i → i so rii(0) = 1

2. i ↔ j iff j ↔ i by definition

3. i ↔ j and j ↔ t we want to show i ↔ t, but we know i → j → t and t → j → i so we use these paths (or
just shorten them by first intersection).

Definition 5. An equivalence class in a Markov chain is a set of states that are commuting with each other.
The set is maximal with its property. In other words, no additional state from S can be included in the set
without breaking the commuting property.

Definition 6. MC is called irreducible if ↔ has just 1 equivalence class. This is equivalent to that ∀ij : i ↔ j.
Or by graph theory we can say that the transition graph is strongly connected and when we compress these

classes we get DAG.
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Definition 7. i ∈ S is called recurrent if ∀j ∈ A(i) : i ∈ A(j) and transient otherwise.

Theorem 2. i ∈ S we define fii = Pr[∃t ≥ 1 : Xt = i|X0 = i] or by words ”probability of going back to i”.
Then:

• i is recurrent iff fii = 1

• i is transient iff fii < 1

Proof. i is transient iff ∃j ∈ A(i) : i /∈ A(j). Starting with X0 = i the probability ∃t ≥ 1 : Xt = j is p > 0 and
Pr[going to i from j] = 0 ⇒ fii ≤ 1− p. And if i is recurrent then fii = 1.

Definition 8. i ∈ S we define Vi as number of visits to i or written as |{t : Xt = i}|
Vi ∈ N ∪ {∞} so it is a random variable defined by X0, X1, . . .

Theorem 3. i is recurrent ⇒ Pr[Vi = ∞|X0 = i] = 1
i is transient ⇒ (Vi|X0 = i) ∼ Geom(1− fii), where (1− fii) is called as escape probability.

1.3 Steady state
Definition 9. Let π be a distribution on S such that (π1 + π2 + · · ·+ πS = 1, πi > 0). Then π is stationary
distribution if πP = π. Or can be written as

[
π = (π1, π2, . . . )|∀jπj =

∑
i∈S πipij

]
for MC with transition

matrix P .

Observation. If π(0) = π and π is stationary then π(1) = π and ∀k : π(k) = π.

Definition 10. s ∈ S is periodic if ∃∆ ≥ 2 integer such that Pr[Xt = s|X0 = s] > 0 ⇒ ∆|t. MC is periodic if
all its states are periodic, otherwise it is aperiodic.

Theorem 4. (Xt)
∞
t=0 is a MC that is irreducible, aperiodic and |S| < ∞. Then ∃π that is a stationary

distribution and ∀j∀i limk→∞ rij(k) = πj, π is a unique solution to

πP = π

π1 = 1

1.4 Absorption probability
Definition 11. Absorption states are such states, that the probability of staying in the same state is 1. Or it
is {s ∈ S : pss = 1}.

Lemma 2 (Probability of Absorption). Assume a MC with absorbing state 0 (and some move). Put

ai = Pr[∃t : Xt = 0|X0 = i] for i ∈ S

Then (ai) are the unique solution to:

a0 = 1
ai = 0 if i 6= 0 and absorbing
ai =

∑
j∈S pijaj for i not absorbing

Proof. a0 = 1 and ai = 0 if i 6= 0 and absorbing is easy observation. Lets assume i is not absorbing then

ai = Pr[∃t : Xt = 0|X0 = i] =
=

∑
j∈S Pr[X1 = j|X0 = i] · Pr[∃t : Xt = 0|X0 = i,X1 = j] =

=
∑

j∈S pij Pr[∃t : Xt = 0|X0 = j] =

=
∑

j∈S pijaj

5



1.5 Mean time to absorption
A ⊆ S is set of all absorption states. T = min{t ≥ 0|Xt ∈ A} is absorption time and random variable. Then we
define µi = E[T |X0 = i].

Theorem 5. (µi)i∈S is the unique solution to:

if i ∈ A µi = 0
if i /∈ A µi = 1 +

∑
j∈S pijµj

1.6 SAT
Problem where there is given a Boolean formula and we have to say if it is satisfiable.

1.6.1 2-SAT (polynomial)
Special case of SAT where all clauses have at most 2 literals.

Algorithm 1 Algorithm for 2-SAT
1: Start with any assignment (x1 = x2 = · · · = xn = F )
2: while Repeat up to 2mn2 times (n is the number of variables and m is an arbitrary parameter) do
3: if ϕ is satisfiable then
4: return ”YES”
5: else
6: choose any clause that is not satisfied and randomly change one of its variables (∗)
7: end if
8: end while
9: return ”NO”

Pr[incorrectly saying no] ≤ 1
2m which can be proved by Markov inequality. Pr[incorrectly saying no] ≤ 1

2m

using iterative Markov inequality.

1.6.2 3-SAT

Algorithm 2 Algorithm for 3-SAT
1: while Repeat for ≤ m times do
2: while Repeat for ≤ 3n/2 times do
3: randomly initialize the variables
4: if ϕ is satisfiable then
5: return ”YES”
6: else
7: choose any clause that is not satisfied and randomly change one of its variables
8: end if
9: end while

10: end while

Running time of this algortihm is exponential in n.
P [failure] ≤ 1

2m

By using a better algorithm we can get the exponential part to be 4n

3 .
The idea behind these algorithms is that we are using a random walk on the space of all possible assignments.

This is a Markov chain. So we can easily calculate the probability of getting to the absorbing state and the
mean time to get there.
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Chapter 2

Bayesian statistics

2.1 What is probability?
We may look at probability from different angles.

1. Math concepts.

• axioms, examples #good
#all , theorems ...

• interesting/useful probabilistic method as ”to show A 6= 0 we show Pr[A] > 0”, lower bounds for
Ramsey number

2. Description of real world. Question: Does Nature play dice?

• YES, if quantum theory is right so called true randomness
• imprecise measurements so called pseudo randomness

Then we we have two possible approaches.

1. Frequntist’s approach # good
# all

2. Bayesian approach as subjective probability, so we are counting with all possible universes and what is
the probability this will happen in our universe.

2.2 Bayesian statistics
1. Θ is random variable describing some quantity of interest

2. X = (X1, . . . , Xn) measurements

Remark. In Frequentist’s approach Θ does not exist we have ϑ as unknown fixed parameter.

2.2.1 Bayes theorem

Pr[B|A] =
Pr[B] Pr[A|B]

Pr[A]

Where Pr[A],Pr[B] > 0. We will consider B as Θ = ϑ and A as measurements X = x. Now we get:

Pr[Θ = ϑ|X = x] =
Pr[Θ = ϑ] Pr[X = x|Θ = ϑ]

Pr[X = x]

Where Pr[Θ = ϑ|X = x] is called posterior and it is the probability after some measurements. Pr[Θ = ϑ]
is called prior as an probability and Pr[X = x|Θ = ϑ] is our current model of the world (likelihood).

variable PMF PDF
1 pΘ fΘ
2 pX fX

7



2.2.2 Bayes theorem using PMF

pΘ|X(ϑ|x) =
pΘ(ϑ)pX|Θ(x|ϑ)∑
ϑ′ pΘ(ϑ′)pX|Θ(x|ϑ′)

= cpΘ(ϑ)pX|Θ(x|ϑ)

For some constant c.

2.3 What do we want?
1. Point estimate for Θ.

2. Interval estimate for Θ.

3. Hypothesis testing.

For interval estimate we have given X and want to find [a, b] as (a = a(X), b = b(X)). Pr[a(x) < Θ <
b(X)|X = x] ≥ 1− α. Perhaps Pr[Θ < a(x)|X = x] = α

2 and Pr[Θ > b(x)|X = x] = α
2 .

For point estimate we have two approaches.

2.3.1 1) MAP as for maximum aposteriori probability (posterior mean)
ϑ̂ = argmax

ϑ
pΘ|X(ϑ|x)

If X = x what is the most likely value?

2.3.2 2) LMS as for least mean square (posterior mode)
ϑ̂ = argminϑ E[(Θ− ϑ)2|X = x]

= E[Θ|X = x]

2.4 Naive Bayes
By the Bayesian statistics we get for X1:

pΘ|X1
(ϑ|x1) =

pΘ(ϑ)pX1|Θ(x1|ϑ)∑
ϑ′ pΘ(ϑ′)pX1|Θ(x1|ϑ′)

But what if we have n measurements to consider. Then we have Pr[Θ = ϑ|X1 = x1, X2 = x2, . . . ] which can
be computed by naive Bayes as:

=
pΘ(ϑ)

∏n
i=1 pXi|Θ(xi|ϑ)∑

ϑ′ pΘ(ϑ′)
∏n

i=1 pXi|Θ(xi|ϑ′)

Also pX|Θ(xi, . . . , x1|Θ = ϑ) is joint PMF and we assume conditional independence.

2.5 Bayes theorem using PDF
As for PMF we have Bayesian statistics for PDF.

fΘ|X(ϑ|x) =
fΘ(ϑ)fX|Θ(x|ϑ)∫∞

−∞ fΘ(ϑ′)fX|Θ(x|ϑ′) dϑ′

2.6 Beta distribution
To see some nice properties of Bayesian theorem we will look into one new distribution. We will have α, β ≥ 1
and ϑ ∈ [0, 1]. Then

fΘ(ϑ) =
ϑα−1(1− ϑ)β−1

B(α, β)

Where B(α, β) is called beta function and for all α, β it is a constant. For example the beta function for
B(1, 1) is equal to 1 from [0, 1] and 0 otherwise. And B(1, 2) = 1

2 . It serves as a normalizing constant for the
beta distribution.

8



Firstly the maximum is at α−1
α+β−2 which is the mode (cz: modus).

Secondly:

B(α, β) =
(α− 1)!(β − 1)!

(α+ β − 2)!
=

1(
α+β−2
α−1

)
Lastly E[Θ] = α

α+β which is the mean.
Now we will look into the Bayesian theorem using Beta distribution as a prior and Binomial distribution as

a likelihood.

pX|Θ(k|ϑ) =
(
n

k

)
ϑk(1− ϑ)n−k

fΘ|X(ϑ|x) = c1ϑ
α−1(1− ϑ)β−1 · c2ϑx(1− β)1−x · c3 =

Where c1, c2, c3 do not depend on ϑ and are some constants.

= c4ϑ
α+k−1(1− ϑ)β+n−k−1

And that is some other Beta distribution with α′ = α+x and β′ = β+n−x. And also we have these point
estimates:

1. MAP ϑ̂ = x
n which is same as likelihood.

2. LMS ϑ̂ = E(Θ|X = x) = x+1
n+2

2.7 Normal random variable
Also we can look at Bayesian theorem with normal variables. Note: This doesn’t seem so interesting and useful,
since it is only computation and nothing else.

2.8 Conditional expectation
Firstly we will remind how expectation is defined. E[Y ] =

∑
y∈Img(Y ) yPr[Y = y] if Y is discrete or =∫∞

−∞ yfY (y) dy if y is continuous. Now we will show how conditional expectation is defined.

E[Y |A] =
∑

y∈Img(Y ) yPr[Y = y|A]

=
∫∞
−∞ yfY |A(y) dy

Now if we have X,Y discrete random variables and x ∈ R, then:

E[Y |X = x] =: g(x)

So g is a function R → R. Then

E[Y |X] =: g(X)

So we have two functions Ω →X R →g R. Now we will show one property which is called Law of Iterated
Expectation.

E[E[Y |X]] =DEF E[g(X)] =LOTUS
∑

x∈Img(X)

g(x) Pr[X = x] =

=DEF
∑

x∈Img(X)

Pr[X = x]E[Y |X = x] = E[Y ]

Where the last equivalence is by the Law of total Expectation. So by this we get E[E[Y |X]] = E[Y ] if
E[Y ] < ∞.

Now, we will use a similar approach to find an alternative definition of variance.
Let Y = Ŷ − Ỹ where Ŷ and Ỹ are statistically independent and var(Ỹ ) = E[Ỹ 2]

var(Y ) = var(Ŷ ) + var(Ỹ )− 2cov(Ŷ , Ỹ )

From the property of the statistical independence we get cov(Ŷ , Ỹ ) = 0.

E[(Y − E[Y |X])2|X] = var[Y |X] =: h(X)

9



2.9 Law of iterated variance
var[Y ] = E[var[Y |X]] + var[E[Y |X]]

Or it is called an Eve’s rule (as E for expected value and V for variance). We may simulate it by saying
that the first part of the sum is expected value of variance within one group and the second part is inter group
variance. This is also partly from the example that was sadly omitted.

Next we can show that Least Mean Square is iff condition expectation. That is for given Y what is the value
of y that minimizes E[Y − y]2?

E[Y − y]2 = E[Y 2]− 2yE[Y ] + y2 = f(y)

f ′(y) = −2E[Y ] + 2y = 0 ⇒ y = E[Y ]

Now we want for all x find y = y(x) such that E[(Y − y(x))2|X = x] is minimized. We can show by similar
calculation that y(x) = E[Y |X = x]. And our best (in the LMS sense) estimation is Ŷ = E[Y |X].
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Chapter 3

Stochastic processes

Stochastic process is a sequence of random variables X1, X2, X3, . . . . We will show that there exist many of
them.

• Markov chain (+ extra condition)

• Wiener process

– Browner motion
– Stock prices
– Limit version of RN

• Arrival times or alternatively waiting for success.

We will be looking at the last type of the processes.

3.1 Bernoulli process (denoted as Bp(p))
That is we have X1, X2, . . . iid and each one of them is Xi ∼ Ber(p) so with probability p it is 1 and 0 with
probability 1− p.

Observation. • Xn, Xn+1, . . . is also Bp(p)

• XN , XN+1, . . . is also Bp(p), with N a random variable dependent only on the past

Then we will define T = min{t : Xt = 1} or by words the time of the first success / arrival. And we can
easily see that T ∼ Geom(p) so E[T ] = 1

p and var[T ] = 1−p
p2 .

Now we will try to generalize this by Tk as the time of the k-th arrival. So T1 = T . Or written as
Tk = min{t : X1 +X2 + · · ·+Xt = k}.

Other interesting variable is the k-th waiting time (inter arrival) and it will be denoted as Lk. To describe
this variable it is the time between k − 1 arrival and k-th arrival. Then it follows

Lk = Tk − Tk−1 when we put T0 = 0

Lk ∼ L1 = T ⇒ Lk ∼ Geom(p)

And all Li are independent. From the other way we can define Tk as the sum
∑k

i=1 = Li. So we can then
get expected value and variance.

E[Tk] = E[L1] + E[L2] + · · ·+ E[Lk] =
k

p

var[Tk] = var[L1] + var[L2] + · · ·+ var[Lk] = k · 1− p

p2

How could we compute Pr[Tk = t] =? Easily we can compute this by convolution formula
(
t−1
k−1

)
pk(1−p)t−k.

Lastly we define Nt as the sum X1 +X2 + · · · +Xt which is the number of successes till the time t. And
Nt ∼ Bin(t, p). So E[Nt] = tp and var[Nt] = tp(1− p).

11



3.1.1 Alternative definition
We can define Bernoulli process by different definition. First we will define L1, L2, . . . as iid ∼ Geom(p) and
then Tk =

∑k
i=1 Li. And Xi is 1 if Tk = i for some k or 0 otherwise. Then (Xi)i is Bp(p).

3.1.2 Merging of Bernoulli process
We will have two processes which are independent.

X1, X2, X3, . . . Bp(p)
Y1, Y2, Y3, . . . Bp(q)

Then the merge is Zi = Xi or Yi. Properly it is

Z1, Z2, Z3, . . . Bp(p+ q − pq) = Bp(1− (1− p)(1− q))

3.1.3 Splitting Bernoulli process
We can also split one Bernoulli process. Firstly we got

Z1, Z2, Z3 . . . Bp(r)

If Zi = 1 then Xi = 1 with probability α and 0 with probability (1− α) and if Zi = 0 then Xi = 0. By this
construction we get new Bernoulli process.

X1, X2, X3, . . . Bp(αr)

3.2 Poisson process (denoted as Pp(λ))
As we defined Bernoulli process we also can define Poisson process which can be described as a continuous
approximation of Bp(p). Now the arrival times are real numbers.

Definition 12. 1. For any interval of length τ probability of k arrivals is the same. Denoted as P (k, τ).

2. Number of arrivals in [a, b] is independent of number in [0, a).

3. P (0, τ) = 1− λτ + o(1), P (1, τ) = λτ + o(1), P (k, τ) = o(1). for k ≥ 2 where o(1) is something that goes
to zero

Then the sequence T1.T2, T3, . . . is Pp(λ) where Ts are the arrival times.
As in Bernoulli process we have Tk as the time of k-th arrival. Then NT is the number of arrivals in [0, t]

and NT ∼ Pois(λt) so P (k, t) = e−λt (λt)
k

k! .
We can show that by the following approximation:

Pr[Nt = k] = P (k, t) =⇒ P (1, t
l ) =

λt
l + o(1)

Pr[Nt = k] = P (k, t) ≈ P [there are K small intervals that has 1 arrival] =
= Pr[Bin(l, λt

l ) = k]
=⇒ liml→∞Bin(l, λt

l ) → Pois(λt)

Then again Lk = Tk − Tk−1 so Pr[Lk ≥ t] = Pr[no arrival in [Tk−1, Tk−1 + t]] and that is equal to P (0, t) =
e−λt. Next Pr[Lk ≤ t] = 1− e−λt ⇒ Lk ∼ Exp(λ).

3.2.1 Alternative description
As in Bernoulli process we can define Poisson process the other way around. We start with sequence of iid
L1, L2, · · · ∼ Exp(λ). Then Tk is the sum Tk =

∑k
i=1 Li. And we also get the same Nt.

Theorem 6. This also defines Pp(λ). In other words it satisfies all of the three properties.

Again as in Bp we can see that expected value of Tk and variance is the sum of expected values (resp.
variances) of Li which are 1

λ (resp. 1
λ2 ). By convolution we get that

fTk
(t) =

λktk−1e−λt

(k − 1)!

12



3.2.2 Splitting of Pp
We have a Pp(λ) and each one is split (1 or 0) with probability p (resp. 1− p). And then we get two processes
Pp(pλ) and Pp((1− p)λ) and these are independent. Two new processes have still the same properties but with
new λ′. To properly show that this holds we need to show all the properties from the definition.

Pr[T1 > t] = Pr[T > t & T ′ > t] = . . .

Remark. Proving independence is quite cumbersome. The proof is based on an example from the lecture.

3.2.3 Merging of Pp
If we have two processes Pp(λ) and Pp(λ′) we can merge these to get Pp(λ+ λ′). Again to properly show that
this holds we must show that the min of two Exp distributions is again Exp distribution with the sum. Which
is quite easy since they are independent, then we get the product of exponent functions which is the same as
the sum of their exponents.

What if we look at the Pr[T − t > s|T > t] which by definition is Pr[T>s+t∧T>t]
Pr[T>t] and that is equal to

e−λ(s+t)

e−λt e−λs and we get the property that the Poisson process is memory-less so it doesn’t matter when we
will start measuring our data.

13



Chapter 4

Balls & Bins

This model is if we have m balls and n bins and for each ball we put it independently at random to one bin,
where each bin has the same probability.

One well known problem is Birthday paradox where we have k people as balls and 365 days as bins. Then
we are asking what is the probability that one bin has at least 2 balls.

Pr[at least 2 balls in one bin] = 1− Pr[max 1 ball in one bin] =

= 1−
m−1∏
i=1

n− i

n
≈ 1−

m−1∏
i=1

e
−i
n = 1− e

−m(m−1)
2n

We also consider other properties, such as the expected number of empty bins:

Pr[bin i is empty] =
(
1− 1

n

)m

≈ e
−m
n

E[# of empty bins] = n

(
1− 1

n

)m

≈ ne
−m
n

Theorem 7 (Max Load Theorem). If m = n and are big enough and M = 3 ln(n)
ln(ln(n)) then

Pr[max # of balls in a bin > M ] <
1

n
.

Proof.

Pr[bin #1 has ≥ M balls] ≤ Pr

[
Bin

(
n,

1

n

)
= M

]
<

1

M !
<

( e

M

)M

Pr[any bin has ≥ M balls] ≤

≤ Pr[bin #1 has ≥ M balls] + · · ·+ Pr[bin #n has ≥ M balls] ≤ n
( e

M

)M

Now we will show that this expression is smaller than 1
n . In order to do that, we wil take the logarithm of

both sides and we get:

2 ln(n) +M (1− ln (M)) < 0

We will then substitute M and show that the inequality holds.

M balls and bins have multiple applications. We will use it for hashing and sorting.

4.1 Bucket Sort Application
We want to sort n = 2k numbers from range [0, 2l − 1] where l > k. The numbers are uniformly random in this
range.
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4.1.1 Algorithm
1. Put input x to a bucket b(x) where b(x) is a hash function of x and bucket is a list.

2. Sort each bucket (list) by a bubble sort in quadratic time.

3. Merge the buckets.

Time Analysis

Parts 1 and 3 are linear in n. For part 2, we will consider Xi = #of inputs in the ith bucket ∼ Bin(n, 1
n ). Then

E time = E
∑

(ciX
2
i ). Finally, we will use the definition of variance to show that the expected time is < 2cn.

Hence the whole algorithm has linear expected time.

4.2 Hash Collisions Application
We want to store n strings and search fast. Using the max load theorem, we will show that max running time
with a big enough n is < 3 ln(n)

ln(ln(n)) .

Theorem 8. Distribution of X(m)
1 , . . . , X

(m)
n , where X

(m)
i represents the number of balls in bin i, is the same

as Y
(m)
1 , . . . Y

(m),
n iid, where Y

(m)
i ∼ Pois

(
m
n

)
and

∑
Y

(m)
i = k

Proof. It is based on the fact that X
(m)
1 ∼ Bin(m, 1

n ) ≈ Pois(mn ) and then we show that Pr[X
(m)
1 =

k1, . . . X
(m)
n = kn] = Px = PY = Pr[Y

(m)
1 = k1 . . . |

∑
Yi = k]

Theorem 9 (Max Load Theorem 2). If m = n and are big enough and M = ln(n)
ln(ln(n)) then

Pr[max # of balls in a bin < M ] ≤ 1

n
.
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Chapter 5

Non-parametric statistics

In parametric statistics, we assume that the data comes from a known distribution and we try to estimate a
parameter of that distribution. In non-parametric statistics, we don’t assume anything about the distribution
of the data.

5.1 Permutation test
is a technique to decide whether observed random variables come from the same distribution or not.

X1, . . . , Xm

Y1, . . . , Yn

H0 : All of these random variables come from the same distribution.
The quantity computed from values in a sample (statistic) T is the difference of means of Xs and Ys.

T := X̄m − Ȳn

Alternatively we can use the two-sided test:

T := |X̄m − Ȳn|

We pick a paramater γ and if T ≥ γ then we reject H0. In order to decide γ, we want our test to be
statistically significant. Hence the following must hold: Pr[wrong rejection] < α = 0.05

So we will compute γ based on the set of all measured values. Next, the observations of groups X and Y
are pooled, and the difference in sample means is calculated and recorded for every possible way of dividing the
pooled values into two groups of size |X| and |Y |. The set of these calculated differences is the exact distribution
of possible differences under the null hypothesis that group labels are exchangeable.The p-value of the test is
calculated as the proportion of sampled permutations where the difference in means was greater than T .

If (m+ n)! is too big, we can use a random permutation test. We will generate k random permutations and
compute the test statistic for each of them.

5.2 One-sampled Sign test
X1, . . . Xn i.i.d. They have unknown distribution which is continuous, has median µ, possibly mean µ and is
symmetric around µ.

H0 : µ = 0
Yi = sgn(Xi) is either 1 or 0
Y =

∑
Yi ∼ Bin(n, 1

2 ) assuming H0. Next, we consider the dsitrubution of Y and compute the quantiles
based on α. If Y > y1−α

2
or Y < yα

2
then we reject H0.

5.3 Paired Sign test
(X1, Y2), . . . , (Xn, Yn)

H0 : E[X] = E[Y ] alternatively E[X − Y ] = 0
We create a new variable Zi = Xi − Yi and we apply the one-sample sign test on Zi.
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5.4 Wilcoxon signed-rank test
The one-sample Wilcoxon signed-rank test can be used to test whether data comes from a symmetric population
with a specified median.

X1, . . . , Xn median is 0
H0 : µ = 0
We sort |X1|, . . . , |Xn| and assign ranks r1, . . . , rn to them. In case the numbers are the same, we compute

the mean of the range. Then we compute T =
∑n

i=1 risgn(Xi) which can be computed as T = T+ − T−

We reject the null hypothesis if T is too large or too small.

5.5 Mann-Whitney U-test
2-sample non-parametric test, which checks whether two samples come from the same distribution.

We compute statistics U =
∑|X|

i

∑|Y |
j S(Xi, Yj)

where S(Xi, Yj) = 0 if Xi > Yj , S(Xi, Yj) = 1 when it is the other way around and 1
2 if they are equal.

It is a form of a permutation test.

5.6 Consequences of statistical designs
5.6.1 Simpson’s paradox
Simpson’s paradox is a phenomenon in probability and statistics in which a trend appears in several groups of
data but disappears or reverses when the groups are combined.
Example. Females at Harvard have overall smaller success rate than males. However, when compared their
success rates in separate majors, females usually dominate. This means that most of the females apply to more
competitive majors.

5.6.2 Time dependency
X1, . . . Xn all tests assume i.i.d. however, in reality, the data is dependent. E[Xi] depends on i.

We can test this phenomenon by replacing Xi by Xi −µ where µ is the median of the measured data. Then
we can observe the sequence of pluses and minuses. If the sequence is random, then we can assume that the
data is independent.
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Chapter 6

Moment Generating Function

Definition 13. If X is a random variable, s ∈ R then MX(s) = E[esX ] where MX is the moment generating
function of X.
Theorem 10. For all s where MX(s) is defined and finite:

MX(s) =

∞∑
k=0

1

k!
E[Xk]sk

Proof. E[Xk] is called the k-th moment. E[X2] = var(X) + E[X]2

es =

∞∑
k=0

sk

k!

E[esX ] = E[
∞∑
k=0

(sX)k

k!
] =

∞∑
k=0

1

k!
E[Xk]sk

For continuous distribution Y , we compute MGF with the help of LOTUS rule as follows:

MY (s) =

∫ ∞

−∞
esyfY (y)dy

Theorem 11.
MaX+b(s) = ebsMX(as)

Theorem 12. if X and Y are independent, then MX+Y (s) = MX(s)MY (s)

Theorem 13. ∃ε > 0∀s ∈ [−ε, ε] : MX(s) = MY (s) ∈ R =⇒ FX = FY

Theorem 14. ∃ε > 0∀s ∈ [−ε, ε] : MYn(s) → MZ(s) ∈ R & FZ is continuous =⇒ FYn → FZ

In this case instead of two random variables, we have a sequence of random variables.
Theorem 15 (Central Limit Theorem). X1, . . . , Xn i.i.d., E[Xi] = µ, var(Xi) = σ2, Yn = 1

σ
√
n
((
∑n

i=1 Xi)−
nµ). Then Yn converges to N (0, 1).
Theorem 16 (Chernooff’s theorem). X1, . . . , Xn i.i.d.,∼ Bern( 12 ), X = X1 + · · · + Xn, var(X) = n,

t > 0 : Pr[X ≤ −t] = Pr[X ≥ t] ≤ e
−t2

2σ2 .

6.1 Source coding theorem
How to encode the information in the most efficient way?

Model: sequence of X1, . . . , Xni.i.d. over finite alphabet.
Goal: find the most efficient encoding of the sequence.
X = (X1, . . . , Xn)
L(nε) = min{L : ∃Cn ⊂ An s.t. |Cn| < 2l & Pr[X ∈ Cn] ≥ 1− ε}

Theorem 17 (Shannon’s source coding theorem).

∀ε > 0 : limn→∞
L(nε)

n
= H(X)
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